Evidence for Sequential Ion-binding Loci along the Inner Pore of the IRK1 Inward-rectifier K+ Channel

نویسندگان

  • Hyeon-Gyu Shin
  • Yanping Xu
  • Zhe Lu
چکیده

Steep rectification in IRK1 (Kir2.1) inward-rectifier K(+) channels reflects strong voltage dependence (valence of approximately 5) of channel block by intracellular cationic blockers such as the polyamine spermine. The observed voltage dependence primarily results from displacement, by spermine, of up to five K(+) ions across the narrow K(+) selectivity filter, along which the transmembrane voltage drops steeply. Spermine first binds, with modest voltage dependence, at a shallow site where it encounters the innermost K(+) ion and impedes conduction. From there, spermine can proceed to a deeper site, displacing several more K(+) ions and thereby producing most of the observed voltage dependence. Since in the deeper blocked state the leading amine group of spermine reaches into the cavity region (internal to the selectivity filter) and interacts with residue D172, its trailing end is expected to be near M183. Here, we found that mutation M183A indeed affected the deeper blocked state, which supports the idea that spermine is located in the region lined by the M2 and not deep in the narrow K(+) selectivity filter. As to the shallower site whose location has been unknown, we note that in the crystal structure of homologous GIRK1 (Kir3.1), four aromatic side chains of F255, one from each of the four subunits, constrict the intracellular end of the pore to approximately 10 A. For technical simplicity, we used tetraethylammonium (TEA) as an initial probe to test whether the corresponding residue in IRK1, F254, forms the shallower site. We found that replacing the aromatic side chain with an aliphatic one not only lowered TEA affinity of the shallower site approximately 100-fold but also eliminated the associated voltage dependence and, furthermore, confirmed that similar effects occurred also for spermine. These results establish the evidence for physically separate, sequential ion-binding loci along the long inner pore of IRK1, and strongly suggest that the aromatic side chains of F254 underlie the likely innermost binding locus for both blocker and K(+) ions in the cytoplasmic pore.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of rectification and permeation by residues in two distinct domains in an inward rectifier K+ channel

Inwardly rectifying K+ channels conduct more inward than outward current as a result of voltage-dependent block of the channel pore by intracellular Mg2+ and polyamines. We investigated the molecular mechanism and structural determinants of inward rectification and ion permeation in a strongly rectifying channel, IRK1. Block by Mg2+ and polyamines is found not to conform to one-to-one binding, ...

متن کامل

Mechanism of the Voltage Sensitivity of IRK1 Inward-rectifier K+ Channel Block by the Polyamine Spermine

IRK1 (Kir2.1) inward-rectifier K+ channels exhibit exceedingly steep rectification, which reflects strong voltage dependence of channel block by intracellular cations such as the polyamine spermine. On the basis of studies of IRK1 block by various amine blockers, it was proposed that the observed voltage dependence (valence approximately 5) of IRK1 block by spermine results primarily from K+ io...

متن کامل

Channel Block by Quaternary Alkylammonium Ions: Dimension and Properties of the Inner Pore

We examined block of two inward-rectifier K 1 channels, IRK1 and ROMK1, by a series of intracellular symmetric quaternary alkylammonium ions (QAs) whose side chains contain one to five methylene groups. As shown previously, the ROMK1 channels bind larger QAs with higher affinity. In contrast, the IRK1 channels strongly select TEA over smaller or larger QAs. This remarkable difference in QA sele...

متن کامل

Pore Block versus Intrinsic Gating in the Mechanism of Inward Rectification in Strongly Rectifying Irk1 Channels

The IRK1 channel is inhibited by intracellular cations such as Mg(2+) and polyamines in a voltage-dependent manner, which renders its I-V curve strongly inwardly rectifying. However, even in excised patches exhaustively perfused with a commonly used artificial intracellular solution nominally free of Mg(2+) and polyamines, the macroscopic I-V curve of the channels displays modest rectification....

متن کامل

IRK1 Inward Rectifier K+ Channels Exhibit No Intrinsic Rectification

In intact cells the depolarization-induced outward IRK1 currents undergo profound relaxation so that the steady-state macroscopic I-V curve exhibits strong inward rectification. A modest degree of rectification persists after the membrane patches were perfused with artificial solutions devoid of Mg(2+) and polyamines, which has been interpreted as a reflection of intrinsic channel gating and le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 126  شماره 

صفحات  -

تاریخ انتشار 2005